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Preface

Water is the most critical resource for the sustainable development and management 
of a country, its society, economy, territory, and the environment. Understanding 
and characterizing water resources, their space and temporal dynamics and occur-
rence, as well as their uses, is thus essential. Several views, approaches, disciplines, 
tools, and data sources are needed in such task; unfortunately, a single reference 
integrating all this is rarely available. This void is what motivates this book.

Water Resources in Chile attempts for a complete characterization of the status 
of the hydrologic research and practice in Chile, as well as the up-to-date situation 
about water research, uses, threats, and challenges. The book corresponds to a major 
effort involving leading researchers and practitioners with a large expertise and 
background in hydrology and water resources in the country. After Chap. 1, which 
presents a brief country profile, there are 21 more chapters addressing a wide variety 
of subjects. Chapters 2, 3, 4, 5, 6, 7, 8, 9, and 10 cover different topics related to 
hydrology and sources of fresh water. Chapters in this section deal with climate and 
weather, precipitation, hydrometeorological regimes, surface and groundwater 
resources, snow processes and glaciers, floods and droughts, water quality, and the 
recently developed general water balance for the country. Chapter 11 introduces the 
policy framework of water resources and river basin management in Chile, while 
Chaps. 12, 13, 14, 15, 16, and 17 describe the agricultural, domestic, mining, hydro-
electric, forestry, and environmental water uses in the country. Finally, Chap. 18, 19, 
20, 21, and 22 address several issues of interest for water management, including 
economic and legal aspects of water in Chile, the impact of climate change and 
land-use changes in water resources, an analysis of current research in water-related 
issues, and a closing chapter dedicated to the challenges with which the country 
must cope to ensure a sustainable water use in the future.

We, the invited Editors as well as all the authors, are pleased to contribute with 
this book to the Springer series “World Water Resources”. We believe the Chilean 
case will be of interest for the international community, due to the wild disparities 
in the country’s geography and climate, the frequent occurrence of water-related 
extreme events, the highly relevant role of snowmelt and groundwater, the variety of 
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water uses and stakeholders, the particular social and legal framework, and the over-
all status of a country aiming to become a developed nation, with many fundamental 
social issues yet to be resolved.

Santiago, Chile Bonifacio Fernández and Jorge Gironás

Preface
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Chapter 2
Climate and Weather in Chile

Patricio Aceituno, Juan Pablo Boisier, René Garreaud, Roberto Rondanelli, 
and José A. Rutllant

Abstract Main physical mechanisms controlling weather and climate in the conti-
nental domain of Chile are addressed in this chapter, with particular emphasis on 
those that are more pertinent to the precipitation regime. In particular, most relevant 
factors that modulate the rainfall variability, from the intraseasonal time-scale to 
long-term changes, are discussed in relation with the characteristics of the large- 
scale atmospheric circulation and different modes in the functioning of the ocean- 
atmosphere system, and the anthropogenic forcing of climate change.

Keywords Climate · Weather · Precipitation · Rainfall variability · Atmospheric 
circulation · Ocean-atmosphere system · Climate change

2.1  Introduction

Main physical mechanisms controlling weather and climate in the continental por-
tion of Chile are discussed in this chapter, with particular emphasis on those that are 
more pertinent to the precipitation regime. Following the presentation in Sect. 2.2 of 
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the large-scale factors influencing climate in this part of the world, including the 
Pacific Ocean and topography, the characteristics of precipitation episodes and 
associated mechanisms are addressed in Sect. 2.3. A description of rainfall variabil-
ity from intraseasonal to interdecadal time scales is presented in Sect. 2.4, while a 
discussion about the role of coastal low-level stratus clouds along the arid and semi- 
arid coast of northern Chile as an alternative source of water resource is included in 
Sect. 2.5.

2.2  Large Scale Factors Controlling Weather and Climate 
in Chile

The semi-permanent subtropical anticyclone over the Southeast Pacific (SEP) and 
the westerly wind regime at mid-latitudes are the most relevant large scale atmo-
spheric factors controlling weather and climate in the continental territory of Chile 
(Fig. 2.1), spanning from around 19°S to 56°S along the western margin of South 
America (Fuenzalida 1971).

Fig. 2.1 Large scale circulation patterns affecting the hydroclimate of Chile. The cyan and orange 
curves indicate the circulation near the surface. The red curve indicates the circulation induced by 
the Bolivian high in the upper troposphere (10 km above sea level, ASL), only evident in austral 
summer. Cyan and orange shades indicate rainfall produced by extratropical and tropical systems, 
respectively. Note the effect of the Andes cordillera in extending northward the effect of extratropi-
cal storms. The gray shade indicates the typical location of the stratocumulus (low cloud) deck 
over the SE Pacific

P. Aceituno et al.
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Frontal systems rooted in cyclonic disturbances drifting in the mid-latitude west-
erly wind belt account for most of the precipitation in south-central Chile, but are 
restricted by the SEP anticyclone (see Sect. 2.3.2 of this chapter) thus creating a 
marked north-south precipitation gradient, with annual mean values ranging from 
less than 10 mm in the hyper-arid north to about 100–1000 mm in the central part, 
and to more than 3000 mm in the humid southern part of the country (Fig. 2.2a). The 
southward (northward) displacement of the subtropical anticyclone/westerly wind 
belt is ultimately forced by the annual cycle of radiative forcing that also controls 
the annual cycle of air temperature with relative warm (cold) conditions during 
austral summer (winter) and a marked seasonality in the rainfall regime over the 
central portion of the country (30°S–40°S) where precipitation episodes concentrate 
during winter (June–July–August, Fig. 2.2b).

The cold Pacific northward Humbold current exerts a strong homogenizing effect 
on the temperature regime along the coast, explaining a meridional gradient that is 
significantly weaker than that observed on the average for same latitudes at the 
hemispherical scale. Furthermore, the strong temperature inversion layer separating 
the relatively cold and humid atmospheric boundary layer from the relatively 
warmer air mass subsiding above, impose an upper limit to the vertical development 
of the stratus cloud deck stretching over a large oceanic region within the domain of 
the SEP subtropical anticyclone.

Topography plays a significant role in shaping the characteristics of weather and 
climate in Chile. Apart from the barrier effect of the Andes, that isolates the Chilean 
territory from the influence of continental air masses, particularly in the northern 
and central portion of the country, the topography modulates the regional and local 
spatial distribution of rainfall. Forced uplift of air masses on the windward side of 
the mountains enhances rainfall intensity while subsidence on the leeside reduces it.

Although separated by the formidable Andes cordillera, conditions over the inte-
rior of the continent also influence the Chilean climate and weather, especially dur-
ing austral summer (January–February–March) over the Altiplano region in the 
central Andes (15–22°S) as explained in Sect. 2.3.1. Summer rainfall episodes 
linked to continental processes can also occur down to 35°S but limited to the upper 
parts of the Andes cordillera (Viale and Garreaud 2014).

2.3  Precipitation Episodes and Associated Mechanisms

No matter where we look along continental Chile, the yearly rainfall accumula-
tion is the result of well-defined precipitation events lasting a few days. As 
reviewed in this section, the number, nature and seasonality of these events varies 
greatly with latitude. Precipitation in the northern highlands (Altiplano region) is 
mostly caused by convective storms that develop preferentially in the afternoon 
and evening during austral summer (December–January–February) in connection 
with the South American Monsoon at tropical latitudes (e.g. Vera et  al. 2006). 
Central and southern Chile are mostly affected by cold fronts rooted in 

2 Climate and Weather in Chile
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midlatitude cyclones, more prevalent during winter months, although cut off lows 
and zonal atmospheric rivers (stationary fronts) can also deliver substantial rain-
fall throughout the year. The annual fraction of rainy days increases from less than 

Fig. 2.2 Where and when does it rain along Chile? (a) Mean annual precipitation (mm) in local 
observational sites. (b) The contribution (%) of rainfall during the austral winter semester (April–
September) to annual totals in each site. (Data source: National Weather Service (DMC) and 
National Water Agency (DGA). Adapted from Boisier et al. 2018)

P. Aceituno et al.
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10% at 30°S to nearly 75% at 45°S (Viale and Garreaud 2015). Farther south the 
lack of local records along the coast difficult this assessment, but one may specu-
late an increased fraction of rainy days and a decrease in the seasonality of the 
rainfall regime.

2.3.1  Rainfall Events in the Altiplano Region

The Altiplano is a high level plateau (ground level at about 3800 m ASL) extending 
along the central Andes from about 15–23°S, whose climate has been described by 
Aceituno (1996) and Garreaud et al. (2003), among others. During most of the year, 
the central Andes are exposed to westerly winds in the middle and upper tropo-
sphere that bring dry air, hindering rainfall in the Altiplano. During the austral sum-
mer, however, an upper level anticyclone develops over the central part of the 
continent (the so called Bolivian High), in response to heating over the central part 
of the continent (Lenters and Cook 1997), leading to weak easterly winds atop of 
the central Andes. When the easterlies are strong enough, moist air sourced in the 
Amazon basin and Bolivian lowlands is entrained into the plateau, feeding precipi-
tation events that can last several days interrupted by dry periods of similar duration 
(Garreaud 1999; Garreaud and Aceituno 2001), as shown in Fig. 2.3a for the loca-
tion of Chungará. Rainy events are not truly continuous; given their convective 
nature, intense precipitation (rain, snow and hail), accompanied by lighting, most 
often occurs during evening but convection subdues during night and is typically 
absent in the morning hours.

Satellite imagery in Fig. 2.3b illustrates the mesoscale structure of the convective 
activity, with distinct cores of about 50 km in the horizontal dimension. Convection 
can be widespread over the Altiplano but it hardly encompasses the western slope of 
the Andes (near the Chilean border) where very arid conditions prevail. Yet, summer 
precipitation over the Altiplano is the only source of groundwater and supply for the 
springs in the upper part of the Atacama Desert (Houston and Hartley 2003). There 
is also a marked north-south gradient in precipitation over the Altiplano, with high-
est values around the Titicaca lake (about 700 mm/year) and minimum over the 
Salar de Uyuni (<100 mm/year).

2.3.2  Extratropical Systems in Central and Southern Chile

To the south of the dry-diagonal that crosses the west coast of South America 
between 23°S and 27°S, systems of extratropical origin are responsibly for most of 
the precipitation in central and southern Chile. Here, most of the precipitation is 
caused by deep stratiform clouds that develop along cold fronts arching equator-
ward, as the one shown in Fig. 2.4. The fronts are in turn rooted in surface cyclones 

2 Climate and Weather in Chile
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drifting eastward in the midlatitudes in connection with upper level troughs. On 
average the latitudinal position of the storm tracks reaches its northernmost position 
(45°–50°S) in austral winter, producing precipitation in central and southern Chile. 
By the contrary, the storm track moves southward (50°–55°S) during summer that, 
together with the expansion of the subtropical anticyclone over the SE Pacific, 
restrict the precipitation to southern and austral Chile during this season.

Low-level northwesterly flow ahead of a cold front transports warm air with high 
water vapor content from the subtropical Pacific southward to the west coast of 
South America. Part of this warm, moist stream ascends over the cold front causing 
clouds and precipitation over the open ocean but the most significant ascent -and 
hence precipitation- occurs when the moist-laden air masses approach the impres-
sive Chilean topography. This forced ascent has several consequences. First, it 

Fig. 2.3 Temporal and spatial characteristics of the summer rainfall over the Altiplano region 
(northern Chile). (a) Time series of the daily rainfall at Chungará station (18.3°S, 69.1°W, 4570 m 
ASL) between Dec. 2016 and May 2017. (Data source: National Water Agency (DGA). The green 
bars encompass 1–2  week long wet periods.) (b) Visible satellite image (from GOES 16) for 
January 29, 2019 at 17:15 local time. The purple-blue shading represents high density of lightning, 
indicative of the convective nature of the clouds

P. Aceituno et al.
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produces west-east precipitation gradients at several scales. Between 33°S and 
40°S, there is a precipitation maximum along the coast on the windward side of the 
coastal range and a minimum in the central valley (Falvey and Garreaud 2007; 
Garreaud et al. 2016). Figure 2.5 illustrates this rainfall contrast for central Chile 
and the Nahuelbuta mountains in the coast of the Biobío region at about 38°S. To 
the east of the central valley, precipitation increases by a factor 2–4 over the western 
slope of the Andes (the Andean amplification is difficult to determine because of the 
lack of high altitude precipitation records and it also varies significantly among 
storms), and sharply decreases to the east of the continental divide (Viale and Núñez 
2011; Viale and Garreaud 2015). The upstream precipitation enhancement and 
downstream rain shadow across the southern Andes cordillera creates one of the 
most extreme precipitation gradients on earth (Smith and Evans 2007), with annual 
accumulation changing from >3000 to <300 mm within 200 km in the east-west 
direction across the Patagonia region.

The second consequence of the coastal range and the Andes along central Chile 
is the blocking of impinging (zonal) flow leading to the formation of a terrain 

Fig. 2.4 An extratropical storm approaching southern Chile. The left panel is a visible image from 
the MODIS sensor aboard of the AQUA Satellite for May 5th 2018, at 15:45 UTC. The blue, red 
and purple lines indicate the location of the cold, warm and occluded fronts, respectively. The 
light-blue and yellow arrows indicate the low-level flow around the surface depression (low pres-
sure), whose center is identified by the letter L. The right panel shows the station-based total pre-
cipitation caused by this system (accumulated rainfall from 4 to 6 of May, 2018). (Data source: 
National Weather Service (DMC) and National Water Agency (DGA))

2 Climate and Weather in Chile
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parallel, northerly jet (Barrett et al. 2009). During the approach of a cold front, this 
northerly jet can be very strong, enhancing convergence and rainfall over the Biobio 
region (36–38°S) but retarding the advance of the front toward central Chile (Barrett 
et al. 2009). Depending on their speed, air parcels above ~2 km can surpass the 
Andes and deliver precipitation, so that storm-accumulated precipitation at any 
given latitude is significantly dictated by the strength of the mid-level westerly flow 
impinging upon the Andes. The correlation between the intensity of this flow and 
rainfall amount improves slightly if one considers the zonal moisture transport 
(Falvey and Garreaud 2007) and is also found on longer time scales: the strongest 
the westerly winds averaged over a season or year, the largest the cumulative pre-
cipitation in that period (Garreaud 2007; Garreaud et al. 2013).

In most storms (at least two third of the events) precipitation over the central val-
ley begins almost simultaneously with the arrival of the cold front and the bulk of 
the rainfall accumulation occurs under cold conditions (post-frontal precipitation), 
with a freezing level altitude around 2200 m (Garreaud 2013). This level is well 
below the Andes crest height at subtropical latitudes (>5000 m ASL) so that a sub-
stantial portion of the winter precipitation builds up a seasonal snow pack that even-
tually melts during the next spring-summer season (Cortés et  al. 2011). Indeed, 
many cold fronts arriving to central Chile during winter produce a minor concurrent 

Fig. 2.5 Impact of the topography on precipitation. Circles indicate the mean annual precipitation 
(MAP) considering all stations between 36.5°S and 38.5°S along a west-east transect (roughly 
perpendicular to the coastal range and the Andes). Crosses indicate the elevation of these stations 
(note the absence of high elevation stations in the Andes). The terrain profile is indicated by the 
mean and maximum height in that range of latitudes. The green circles are MAP from DMC and 
DGA stations. The blue circles over the coastal range are MAP estimates based on a network of 
stations installed during AFEX (Garreaud et al. 2017)

P. Aceituno et al.
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increase in the flow of the rivers draining the Andes cordillera. A few winter storms, 
however, feature warm conditions (air temperature doesn’t drop during the precipi-
tation period) causing the freezing level to remain as high as 4000 m ASL, increas-
ing the pluvial area up to a factor 4 relative to average conditions (Garreaud 2013). 
Warm winter storms have caused some of the most devastating landslides and flood-
ing in the recent past and will be described in connection with zonal atmo-
spheric rivers.

2.3.3  Atmospheric Rivers

The increasing availability of high resolution images of spatial distribution of water 
vapor and precipitable water (column integrated water vapor content) from meteoro-
logical satellites allows the detection of relatively long, narrow regions in the atmo-
sphere, identified as atmospheric rivers (ARs), that transport water vapor outside of 
the tropics in a concentrated and highly efficient way (for an updated review see 
Ralph et al. 2017). These features are relevant to the rainfall regime in Chile because 
those making landfall along the coast favor the occurrence of intense rainfall. Recent 
surveys of ARs (Guan and Waliser 2015; Viale et al. 2018) indicate that 20–40 ARs 
make landfall in the coast of central-southern Chile per year (maximum at 40–50°S), 
one of the largest frequency worldwide, explaining about half of the annual rainfall 
and extreme precipitation events. Atmospheric rivers are mostly a wintertime phe-
nomenon in central Chile, but they can occur year-round to the south of 40°S.

Most cold fronts described in Sect. 2.3.1 feature an AR ahead of them. ARs can 
also occur ahead of stationary fronts extending thousands of kilometers across the 
South Pacific with a zonal (East-West) direction and little displacement in the cross- 
front (north-south) direction. When a zonal AR landfalls, substantial prefrontal pre-
cipitation (up to 100 mm) can accumulate at the coast, inland valleys and the western 
slope of the Andes over periods of 24–72 h without a decrease in air temperature 
and freezing levels. As commented before, such situation renders AR/Warm storms 
into a significant hydrometeorological hazards, such as the 3-May-1993 landslide in 
Santiago, with a toll of more than 80 fatalities (Garreaud and Rutllant 1996) and the 
16-Dec-2017 flooding of the Santa Lucía village in northern Patagonia, with a toll 
of more than 20 fatalities (Viale 2017). This later case helps to describe the charac-
teristics of a zonal, quasi-stationary AR as depicted in Fig. 2.6. The AR extended 
more than 3000 km from the central Pacific to South America, and was located just 
below the axis of the wind maxima that contributed to the exceptional AR length. 
The upper level flow is mostly zonal, with a hint of a ridge aloft, quite different from 
the circulation observed most often in winter storms over central Chile (Fig. 2.4) 
featuring a deep trough aloft and northwesterly flow. Since, in this case there is 
weak synoptic-scale forcing for upward motion, precipitation (in excess of 80 mm/
day) was largely generated by the forced ascent over the Andes of the narrow string 
of moist air defining the atmospheric river.

2 Climate and Weather in Chile
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2.3.4  Cut-Off Lows

Cut-off lows (COLs) (Palmen 1949) were only recently recognized as potentially 
relevant for precipitation in Chile, especially in the northern portion of the country 
(Pizarro and Montecinos 2000; Fuenzalida et al. 2005). Cut-off lows are synoptic 
scale systems that owe their existence mostly to breaking of the extratropical synop-
tic scale waves (Ndarana and Waugh 2010). As an upper level trough amplifies 
towards subtropical latitudes, a cyclonic anomaly becomes disconnected (cut- off) 
from the high latitude westerly wind regime (see Fig. 2.7). An upper level cyclone 
is then shed northward reaching even subtropical latitudes along the Chilean coast 
where it often moves erratically for several days until dissipation or crossing the 
Andes. The relatively cold mid-tropospheric conditions associated with this system 
explain the Spanish names given to this phenomenon (“núcleo frío en altura”, upper 
tropospheric cold core and “gota fría”, cold drop).

A cut-off low is primarily an upper tropospheric phenomenon with circulation 
and thermodynamic features most evident in the upper levels of the troposphere and 
surface manifestations hardly present. Nevertheless, COLs are relevant for weather 
conditions in Chile as they are responsible for a significant fraction of total precipi-
tation in the Northern-Central portion of the country (Barahona 2013). The spatial 
distribution of precipitation and the fraction of annual rainfall attributed to COLs 

Fig. 2.6 An Atmospheric River (AR) landfalling in southern Chile. The left panel is a visible 
image from the MODIS sensor aboard of the AQUA Satellite for December 16, 2017, at 15:45 
UTC. The purple line indicate the location of a stationary front. The light-blue and yellow arrows 
indicate the low-level flow at each side of the front. The AR is the stream to the north of the front 
transporting large amounts of water vapor that cause precipitation when it encounters topography. 
The right panel shows the station-based total precipitation caused by this AR (accumulated rainfall 
from 15 to 17 of December, 2017). (Data source: National Weather Service (DMC) and National 
Water Agency (DGA))

P. Aceituno et al.
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are shown in Fig. 2.8 for the period 1979–2014. The contribution of these systems 
to annual rainfall varies between 0 and 50 mm in the semi-arid region to the north 
of 32°S while the maximum contribution occurs at about 36°S (with nearly 200 mm/
year). Farther north the percentage of annual rainfall associated to COLs can reach 
30% or more, although statistics become less reliable with fewer cases detected as 
one moves into the hyperarid Atacama Desert. In Central Chile, from about 30°S to 
38°S, the percentage of annual rainfall due to COLs varies between 10 and 15%.

Besides the impact on annual precipitation, COLs can generate extreme precipi-
tation events, the most recent and noteworthy being the Atacama flooding episode 
in March 2015 (Barrett et al. 2016; Bozkurt et al. 2016; Rondanelli et al. 2019), one 
of the worst hydrometeorological disasters in the history of the country in terms of 
losses of life and infrastructure. Flooding during this storm resulted from the accu-
mulation of up to 100 mm during 3 days over an otherwise arid region, with rainfall 
intensities in excess of 10 mm/h at some stations.

The relatively cold air associated to COLs induces a decrease in the static stabil-
ity in mid to lower levels of the troposphere as well as a cyclonic circulation consis-
tent with the field of temperature anomalies. Given that most of these disturbances 
originate over the cold water of the Southeast Pacific, convective instability is not 

Fig. 2.7 A Cutoff low over central Chile. The left panel is an infrared image from the GOES-12 
for March 7, 2008, at about 8 AM. Dark gray areas are cloud free, light gray areas indicate low and 
midlevel clouds, while yellow and blue areas indicate clouds with high tops, presumably precipi-
tating. Superimpose on this image are the 300 hPa geopotential height contours (every 60 m) show-
ing a cutoff low with its center (L) just offshore central Chile. The right panel shows the 
station-based total precipitation caused by this COL (accumulated rainfall from 6 to 8 of March 
2008). (Data source: National Weather Service (DMC) and National Water Agency (DGA))

2 Climate and Weather in Chile



18

frequently released over the ocean and consequently dry air masses ascending in the 
leading edge of the cut-off low explain the relative absence of precipitation over the 
ocean off the chilean coast (Garreaud and Fuenzalida 2007; Barahona 2016). Given 
that a fundamental mechanism for the dissipation of the cut-off low is the heating 
due to the release of latent heat by water vapor condensation, the cold ocean and the 
blocking effect of the Andes cordillera act as a “protection” to the release of convec-
tive instability and further dissipation of the cut-off low. This might explain the 
maxima in the frequency of cut-off lows near the Chilean coast (Fuenzalida et al. 
2005; Garreaud and Fuenzalida 2007; Barahona 2016).

Different mechanisms control the occurrence of rainfall episodes associated to a 
cut-off low as it approaches the South American continent, with pre-existing posi-
tive sea surface temperature anomalies and larger than average water vapor in the 
region off the coast of Chile and Peru favoring their occurrence (Fuentes 2014; 
Bozkurt et al. 2016). In some cases, when water vapor is available from the eastern 
side of the Andes, deep convection is triggered mostly over the mountains due to the 
release of conditional instability associated to the forced uplift, usually accompa-
nied by precipitation and thunderstorms. In other cases, when relatively warm con-
ditions prevail, precipitation might concentrate over the coastal region, thereby 
reversing the typical positive gradient of precipitation with altitude (Scaff et al. 2017).

Cut-off lows are therefore highly relevant for the occurrence of rainfall episodes 
in Chile, not as much for the total amount of annual precipitation explained by these 
systems but rather by the potentially large and localized rainfall intensities and 

Fig. 2.8 Distribution of annual precipitation due to cut-off lows: (a) spatial distribution and (c) 
latitudinal distribution from CR2MET daily rainfall product for the period 1979 to 2014 (Boisier 
et al. 2018), using the cut-off low database developed by Barahona (2016); (b) spatial distribution 
and (d) latitudinal distribution of the percentage of annual precipitation due to cut-off lows
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therefore a low spatial predictability of their occurrence, both features arising from 
the convectively unstable nature of these systems.

2.4  Intraseasonal to Decadal Scale Precipitation Variability

As described in the previous section, the extratropical and oceanic nature of precipi-
tation in most of the Chilean territory is coherent with a marked seasonality and a 
typical return period (weekly) of rainfall events in winter. Yet, superimposed to the 
synoptic time scale, there is a myriad of climate variability modes within the Pacific 
basin that modulates precipitation in Chile within the year (intraseasonal) and in 
longer time scales (interannual to decadal).

The intraseasonal climate variability in the Southern Hemisphere has been the 
subject of a large body of research, notably boosted by the increased availability of 
global weather maps and re-analyses since the 1990s. Beyond the variable observed 
or method applied, the examination of low-frequency variability of extratropical 
circulation leads to a coherent picture. The Southern Annular Mode (SAM) and the 
Pacific–South American (PSA) patterns of variability emerge as the leading intra-
seasonal modes in this region (e.g., Sinclair et  al. 1997; Thompson and Wallace 
2000; Mo and Paegle 2001). The SAM (also known as Antarctic Oscillation or high- 
latitude mode) characterizes a zonally, quasi-symmetric structure in atmospheric 
fields, measuring the strength of the polar vortex. The PSA patterns refer to station-
ary wave trains of particularly large amplitude in the south Pacific. The nature of 
these modes is discussed later.

Figure 2.9 illustrates the influence of intraseasonal circulation variability on pre-
cipitation, based on a principal component analysis applied on monthly sea-level 
pressure (SLP) anomalies in southern extratropical latitudes (20–90°S) for the aus-
tral winter semester (April–September). The three leading modes correspond 
closely to the SAM and PSA modes number 1 and 2 described in former studies 
(e.g. Sinclair et al. 1997). The first mode measures the co-occurrence of pressure 
levels below and above normal at mid and high latitudes, respectively, which cor-
respond to the negative SAM phase after a usual definition of this phenomenon 
(e.g., Marshall 2003). The second mode characterizes high-pressure anomalies 
around the Amundsen Sea, while the third mode exhibits a wave-like pattern with 
SLP anomalies of different sign along the Antarctic Circle.

Figure 2.9 also illustrates how the circulation patterns modulate precipitation 
across the southern Pacific (reanalysis estimate) and in central-southern Chile 
(observations-based). Within the extratropics, anomalously dry conditions prevail 
on the equatorward side of the centers of high SLP; a response that can be viewed 
as the direct – blocking – effect of persistent anticyclones on the westerly flow and 
baroclinic eddies. In turn, positive precipitation anomalies are found near the cen-
ters of negative SLP anomalies. In this way, the first mode (SAM) leads to a band of 
positive precipitation anomaly at 35–45°S, affecting most of central-southern 
regions of Chile (Fig. 2.9a; see also Gillett et al. 2006). This effect is consistent with 
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the increased meridional pressure gradient at mid-latitudes and the equatorward 
location of the storm track during a negative SAM phase (Sinclair et al. 1997; Rao 
et al. 2003). A similar precipitation pattern is observed in the SE Pacific with the 
PSA-1 mode, leading to wetter conditions in central and south-central Chile 
(Fig. 2.9b). In this analysis, the PSA-2 mode comprises an anticyclonic anomaly 
near the southern tip of South America. Consequently, dry conditions should prevail 
during the positive phase of this mode in austral Chile, although the limited records 
in Patagonia do not reflect this effect clearly (Fig. 2.9c). Due to the same mecha-
nism described previously, this mode associates also with positive rainfall anoma-
lies further north in central Chile.

Although the nature of PSA modes is not fully understood (O’Kane et al. 2016), 
they are frequently linked to standing Rossby waves in the atmosphere, triggered by 
deep convection in the tropics (Mo and Higgins 1998; Renwick and Revell 1999; 

Fig. 2.9 Modes of low frequency variability. (a–c) Pearson’s correlation coefficient of the three 
leading components of monthly sea-level pressure (SLP) anomalies during austral winter (April–
September) in the region 20–90°S with SLP (continuous (broken) lines denoting positive (nega-
tive) correlation) and precipitation (colored areas). Correlations in panel (d) are obtained between 
the winter mean multivariate ENSO index (MEI) and SLP/precipitation. Results illustrated in 
hemispheric maps (left panels) are computed with ERA-Interim reanalysis data (Dee et al. 2011), 
while details in central and southern Chile (right) are based on observations at stations belonging 
to the National Weather Service (DMC) and National Water Agency (DGA)
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Mo and Paegle 2001). The PSA patterns represent then teleconnections through 
which a tropical disturbance may affect weather in remote regions. Particularly, this 
mechanism explains the SE Pacific circulation and South American climate response 
to some well-known tropical phenomena, notably the Madden-Julian Oscillation 
(MJO) and El Niño/Southern Oscillation (ENSO) (Aceituno 1988; Karoly 1989; 
Renwick and Revell 1999; Grimm et al. 2000; Mo and Paegle 2001; Renwick 2005; 
Barrett et al. 2011; Álvarez et al. 2016).

During the warm ENSO phase (positive MEI Index; El Niño years) there is a 
tendency for above normal precipitation in central Chile in austral winter and spring. 
Later in the latter season, these positive rainfall anomalies shift to south-central 
Chile, while farther south dry anomalies prevail in the austral summer (Rutllant and 
Fuenzalida 1991; Montecinos and Aceituno 2003). The wetter than normal condi-
tions in central Chile are a regional manifestation of large-scale circulation and 
precipitation anomalies, as shown in Fig. 2.9d. El Niño leads to anticyclonic circu-
lation anomalies over the Amundsen-Bellingshausen Sea. The stationary and quasi- 
barotropic nature of these high-pressure systems blocks the westerlies and associated 
polar-front jet stream, diverting the storm track toward subtropical latitudes (Rutllant 
and Fuenzalida 1991; Marqués and Rao 1999), where the weakened SE Pacific 
subtropical anticyclone (SEPSA) favors the development of cyclonic circulation 
anomalies. The linear, contemporaneous (no lag) relationship between SST anoma-
lies in the tropical Pacific (Niño3.4 index) and central Chile rainfall fluctuated 
between 0.6 and 0.7 during most of the twenty-first century, enough to consider its 
use for intraseasonal prediction (Montecinos and Aceituno 2003). During the first 
decades of the present century, however, the strength of the negative correlation 
reduced significantly for reasons yet unclear (Garreaud et al. 2019).

ENSO further impacts the rainfall over the South American Altiplano. The 
weaker than average subtropical jet during La Niña summers (December–January–
February) foster advection of moist air from the interior of the continent towards the 
central Andes (see Sect. 2.3.1) thus increasing rainfall (Garreaud and Aceituno 
2001). On the contrary, during El Niño summers stronger than average westerlies in 
the subtropics restrict rainfall over the Altiplano.

The mechanisms explaining rainfall variability at inter-annual time scales in con-
nection with the ENSO cycle (2 to 7 years) is closely related to intraseasonal phe-
nomena and the occurrence of PSA modes (Fig.  2.9). In particular, when the 
convective phase of the MJO (30–90 day cycles) transits eastward along the equato-
rial Pacific from the western side (La Niña-like) to the central Pacific (El Niño-like), 
a concomitant strengthening and weakening of the SE Pacific subtropical anticy-
clone is observed. In the later stage, the enhanced convection around the date line 
triggers a PSA teleconnection (e.g. Álvarez et al. 2016). Therefore, both ENSO and 
MJO can act constructively to generate circulation anomalies in central Chile that 
favor the occurrence of intense precipitation episodes (Donald et  al. 2006; Juliá 
et al. 2012; Barrett et al. 2011; Rondanelli et al. 2019).

Given the strong influence of oceanic and atmospheric conditions in the equato-
rial and South Pacific regions on climate in Chile, its behavior exhibits a decadal- 
scale variability connected to known ENSO-like, low frequency cycles (e.g., 
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Garreaud and Battisti 1999; Dong and Dai 2015). Following the same mechanisms 
established for ENSO, warm phases of the Pacific Decadal Oscillation (PDO) or 
Interdecadal Pacific Oscillation (roughly the same phenomenon) are associated 
with wetter than normal conditions in central Chile, notably during the 1930s and 
1980s. Particular attention has been paid to climate effects of a relatively rapid tran-
sition from a negative to a positive PDO phase in the mid-1970s (e.g. Quintana and 
Aceituno 2012; Jacques-Coper and Garreaud 2015). Moreover, a particularly strong 
rainfall decline in central Chile since the early 1980s, related to a gradual turn back 
to a cold PDO phase, has accentuated the effects of a secular drying trend in Chile 
(Boisier et al. 2016).

2.5  Long-Term Changes in Precipitation

According to what most climate models project for the next decades under carbon- 
intensive global socioeconomic scenarios, the western coast of southern South 
America would be one of the regions of the planet strongly affected by precipitation 
loss (Collins et al. 2013; Schewe et al. 2014; Jiménez-Cisneros et al. 2014). This 
drying trend, as those modelled in other subtropical regions in the globe (southern 
Spain and northwestern Africa, south Africa, southwestern Australia), is associated 
with hemispheric-scale perturbations frequently interpreted as a poleward shift of 
general circulation patterns, including the expansion of the subtropical dry regimes 
under influence of descending Hadley Cell branch (Cai et al. 2012). At higher lati-
tudes, an intensification of the circumpolar vortex alike the positive phase of the 
SAM – shown by both climate models and historical reconstructions (e.g. Gillett 
et al. 2013) – produces a poleward shift of the region of maximum westerly flow, 
with dryer/wetter conditions northward/southward from the edge of the mid-latitude 
storm track. As a result of these large-scale perturbations, current models simulate 
a particularly strong drying pattern across the SE Pacific, directly heading central- 
southern Chile (Fig. 2.10), where precipitation may decline by 40% toward the end 
of the twenty-first century (Polade et al. 2017).

Consistent with the modelled climate response to anthropogenic forcing, obser-
vational records indicate a long-term precipitation reduction along the southwest 
coast of South America (e.g., Aceituno et al. 1993; Minetti et al. 2003; Haylock 
et al. 2006; Quintana and Aceituno 2012; Cai et al. 2012; Purich et al. 2013), which 
is particularly significant in central Chile since the end of 1970s. The causes of this 
trend seem both natural – with the PDO as key driver – and anthropogenic, the latter 
accounting for about one third of the total signal (Boisier et  al. 2016). Further 
research showed that in addition to the increasing greenhouse gas (GHG) concentra-
tion in the atmosphere, changes in atmospheric circulation associated with the 
stratospheric ozone depletion have very likely contributed to the strong precipita-
tion decline observed in the southern portion of the country during summer (Boisier 
et  al. 2018), a seasonal signature well reproduced in climate model simulations 
(Fig. 2.10).
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Since about 2010, the unfortunate combination of a secular drying trend and 
natural climate variability has resulted in a decade-long rainfall deficit in central 
Chile. In addition to the multiple impacts driven by reduced water availability, this 
so-called mega-drought has been accompanied by an above normal frequency of 
heat waves and more intense fire seasons (Garreaud et al. 2017). The persistence 
and intensity of this dry period (mean rainfall deficit of ~25%) expose a sharp pic-
ture of the hydroclimatic conditions that a large region in Chile could face as the 
norm around the mid-twenty-first century if no strong mitigation measures against 
fossil-fuel emissions are adopted globally (Fig. 2.10).

Further details on climate scenarios and regional-scale hydrological projections 
for Chile are included in Chap. 19. Nevertheless, a source of considerable uncer-
tainty in future climate scenarios is the unknown functioning of ENSO in a warmer 
world, given the high relevance of this mode in the interannual variability of the 
hydroclimate of central-south Chile.

2.6  Other Processes Relevant to Water Resources

The search for sustainable human development in subtropical arid climates in Chile 
calls for the prospection of non-conventional water resources. Present projections 
for climate evolution in these areas under different GHG emission scenarios 

Fig. 2.10 Future climate scenarios: (a) Projected multi-model mean change in annual precipita-
tion (colors) and in sea-level pressure (solid and dashed contours indicate positive and negatives 
differences, drawn every 0.5 hPa) toward the end of the twenty-first century (2060–2099 minus 
1960–1999). (b) Multi-model mean ± 1 standard deviation of seasonal summer and winter precipi-
tation in central-southern Chile (see domain in panel (a)). All results are based on the full-forced 
historical and rcp8.5 simulations from 34 climate models participating in Coupled Model 
Intercomparison Project Phase 5 (CMIP5; Taylor et al. 2011)
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anticipate a decreasing trend in annual precipitation (e.g. Schulz et al. 2011) and 
inland warming, both contributing to increase aridity indices. Small coastal com-
munities along northern Chile could benefit from cloud-water collection in areas 
where highly-persistent coastal low-clouds (i.e. stratocumulus clouds: Sc) are inter-
cepted by coastal orography. A key aspect when assessing the potential of this fresh-
water resource is the projection of the future evolution and seasonal variability of Sc 
frequency, cloud base and top heights, liquid water content and drop-size distribu-
tion (e.g Klemm et al. 2012). Besides the necessary research on these physical cli-
mate issues, improved designs of water collecting devices are of utmost importance 
both in terms of efficiency and adequate structures to withstand episodic high- 
wind storms.

Early experiences in Chile were developed at the Universidad Católica del Norte 
(Antofagasta) (e.g. Lleal i Galceran 1987, and references therein). In the late 1980s, 
the Camanchacas Chile International Project was carried on at El Tofo, north of La 
Serena, aimed at studying the collection efficiency of low-cost rectangular meshes. 
Ultimately, the idea was to supply fresh-water to Chungungo, a nearby fishermen 
village (Schemenauer et al. 1988; Fuenzalida et al. 1989). Ongoing monitoring and 
research initiatives are taking place at Fray Jorge relict forest (e.g. Garreaud et al. 
2008), at Alto Patache, Iquique (e.g. Muñoz-Schick et al. 2001) and Talinay (e.g. 
Rutllant et al. 2017). Results from these experiments have permitted the recognition 
of episodic strong water collection events in connection with the rear edge of coastal 
lows with northwesterly winds (advective camanchacas), and other more frequent, 
albeit less intense, orographic lifting events of the moist marine boundary layer air 
under southerly winds (orographic camanchacas) (e.g. Cereceda et al. 2002).

A simple calculation provides an order of magnitude of this fresh water resource. 
Consider a fog-collection mesh with surface area A (m2) and a cloud with liquid 
water content L (l m−3), moving across the mesh with speed U (m s−1) perpendicular 
to it. Then the cloud volume crossing the mesh in 1 s is UA (m3 s−1), and the col-
lected water would be α UAL (l m−2 s−1), where the collecting efficiency α (typically 
10%) depends on the cloud droplet size distribution, mesh material and framework. 
Since characteristic collected water volumes range between 2 and 12 lt m−2 day−1 
and assuming 8 days of water collection per month during 6 months, mean annual 
collected water volume would be around 250 l for a 1 m2 mesh.
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